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Abstract

Empirical relationships between effective conductivities in porous and

composite materials and their geometric characteristics such as volume

fraction ε, tortuosity τ and constrictivity β are established. For this pur-

pose, 43 virtually generated 3D microstructures with varying geometric

characteristics are considered. Effective conductivities σeff are determined

by numerical transport simulations. Using error-minimization the follow-

ing relationships have been established: σeff = σ0
ε1.15β0.37

τ4.39
geod

and σeff =

σ0
εβ0.36

τ5.17
geod

(simplified formula) with intrinsic conductivity σ0, geodesic tor-

tuosity τgeod and relative prediction errors of 19% and 18%, respectively.

We critically analyze the methodologies used to determine tortuosity and

constrictivity. Comparing geometric tortuosity and geodesic tortuosity,

our results indicate that geometric tortuosity has a tendency to overesti-

mate the windedness of transport paths. Analyzing various definitions of

constrictivity, we find that the established definition describes the effect

of bottlenecks well. In summary, the established relationships are im-

portant for a purposeful optimization of materials with specific transport

properties, such as porous electrodes in fuel cells and batteries.
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Introduction

It is widely accepted that the 3D microstructure of porous and composite ma-

terials has a strong influence on effective transport processes in these materials,

e.g. on electric and ionic conductivities in solar cells, fuel cells and batteries.

In order to perform materials optimization in a reliable and efficient way, it is

necessary to understand the relationship between microstructure and effective

transport properties on a quantitative level. The question that we address here

is how the complex geometry of a microstructure influences conductive transport

processes. Several formulas exist in the literature suggesting that volume frac-

tion of the transport phase (ε), windedness of transport pathways (tortuosity

τ) and bottlenecks (constrictivity β) play a major role.1–7

Recently, Gaiselmann et al.8 have proposed a general relationship between

geometric characteristics and effective conductivities of the following type: σeff =

σ0a
εbβc

τd for certain parameters a, b, c, d ≥ 0 and intrinsic conductivity σ0. To

get suitable values of these parameters, 44 virtual 3D microstructures generated

by a random graph model were analyzed. For each microstructure, geometric

characteristics (volume, constrictivity, geometric tortuosity) and the effective

conductivity σeff (using the finite element method) were determined. Error-

minimization led to the following expression: σeff = σ02.03
ε1.57β0.72

τ2 . Their

approach - combining stochastic microstructure modeling with finite element

simulations - was referred to as virtual materials testing (VMT).

In the older literature2, 3, 6 the micro-macro relationships are usually de-

scribed by a similar type of equation as it is proposed by Gaiselmann et al.8
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However, the older investigations came up with simple integral numbers for the

parameters (usually 1 or 2, positive or negative). A typical example is the influ-

ence of path length (i.e. tortuosity). Based on theoretical considerations it was

argued that tortuosity should carry the exponent -2 (i.e. τ−2). In Gaiselmann

et al.8 the parameters are determined based on a statistical error minimiza-

tion procedure, and using empirical data from VMT. It is important to note

that the result of such a statistical approach strongly depends on the methods

used to access the empirical data. For example the resulting parameter values

depend on the image processing technique used to determine tortuosity. As a

consequence of the statistical approach the parameters tend to be non-integer

numbers, and only accidentally simple integers are obtained.

In the present paper, we extend the study performed by Gaiselmann et al.8

in several ways. The goal is to establish empirical relationships between effec-

tive transport properties and geometric characteristics using the same virtual

microstructures, but also to critically analyze and evaluate the methodologies

used to determine the microstructure characteristics, which are the following:

Tortuosity. In a simplified way, tortuosity τ ≥ 1 can be described as the

mean shortest transport path length divided by the sample thickness. It is a

measure for the windedness of transport paths. There are various definitions of

tortuosity used in geology, physics, engineering and image analysis. We analyze

the sensitivity of the predictive formulas depending on which type of tortuosity

is considered. By comparing two types of tortuosity, geometric tortuosity τgeom

and geodesic tortuosity τgeod, it will be shown in this paper that the choice of

tortuosity has a significant impact on the predictive formulas.

Constrictivity. Constrictivity β ∈ [0, 1] is a measure for the strength of

bottleneck effects. Constrictivity was introduced by E. E. Petersen9 for flow in

simple pipes. It was shown that the influence of hyperbolic constrictions on the
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flow properties in pipes scales with the ratio of the minimum cross sectional area

over the maximum cross sectional area. This leads to the following expression:

β =
πr2min

πr2max
=

(

rmin

rmax

)2

. For disordered microstructures this concept was diffi-

cult to apply, since minimum and maximum cross sections are difficult to access.

However, with the progress in tomography and 3D image analysis new meth-

ods became available to describe different characteristics of size distributions in

complex microstructures. For example Münch and Holzer10 presented a method

to describe the size distribution of bulges in continuously networked microstruc-

tures, which was called continuous pore size distribution (c-PSD). It is applica-

ble to both particle and pore networks. In the same paper it is also shown that

mercury intrusion porosimetry (MIP) is a suitable method to capture bottleneck

sizes.11 The MIP-PSD curves usually show a steep decrease of cumulated volume

(y-axis) within a narrow range of pore sizes (x-axis). This steep decrease in vol-

ume is interpreted as the so-called breakthrough of the intruding liquid and the

narrow range of sizes is therefore considered as characteristic dimensions of the

bottlenecks. In addition to the experimental porosimetry, MIP-PSDs can also

be determined with numerical simulations, using tomographic data as input. In

this way the typical bottleneck dimensions can also be accessed for solid phases.

Hence with these 3D methods the size distributions of bulges and bottlenecks

can now be accessed for a wide range of materials and the study of various trans-

port properties. Furthermore, in this way the concept of β as β = (rmin/rmax)
2

can now be applied also to complex disordered microstructures, as shown by

Holzer et al.5 Thereby, the average size of bulges (rmax) was defined as the

radius corresponding to the 50% quantile of the c-PSD curve. In analogy, the

average size of bottlenecks (rmin) is defined as 50% quantile of the MIP-PSD

curve. It should be noted that this definition (i.e. using the 50% quantile) is

reasonable but somewhat arbitrary. Thus, in the present study we also address
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the question if there are better definitions for constrictivity. Why using 50%

quantiles and does one really need both characteristics, MIP-PSD and c-PSD to

describe the bottleneck effect? Why not define constrictivity in a different way?

To answer these questions, we consider various definitions of constrictivity and

analyze their capability to predict effective transport properties.

Volume fraction. The third microstructure characteristic is volume fraction

ε ∈ [0, 1] of the transport phase. For example, the electrical conductivity in

composite solid oxid fuel cell (SOFC) anodes strongly depends on the nickel

content. Of course, it is only the connected portion of this phase which con-

tributes to the transport. Thus it is more correct to consider only the connected

portion, which is then the effective volume fraction (εeff). Nevertheless, in the

present work we are dealing with virtual microstructures from stochastic simu-

lation, which are based on a fully connected random graph model.8 Therefore,

in this paper the volume fraction is per definition identical with the effective

volume fraction (i.e. 100% percolating). It must be emphasized that the virtual

microstructures used in this work are identical with those from Gaiselmann et

al.8 (minus one structure with extreme properties). However, in this work we

address some important questions about the underlying concept, and we use

some refined methodologies to increase reliability and precision of predictions.

For example, we compute the effective conductivities directly on the voxel-grid

obtained from tomography using GeoDict12 instead of using a reduced, trian-

gulated mesh as input for the finite elment method (FEM). Thus, we omit the

uncertainty introduced by the meshing of the voxel-grid as in Gaiselmann et al.8

As a consequence, the computed effective conductivies slightly change. This also

results in different values of parameters of the fitting.

Furthermore, we extend the study of Gaiselmann et al.8 by differentiating

between training errors and prediction errors.13 If predictive capability of the

5



established relationships is of major interest, then the prediction error should

be considered, as it is done in the present study.

This paper is organized as follows. To begin with, we present the data basis

from VMT with the corresponding geometric characteristics (volume fraction,

constrictivity, tortuosity) and the transport processes. Then, the statistical

methods are introduced, before prediction of effective conductivity is discussed.

Moreover, geometric and geodesic tortuosities are compared and various defini-

tions of constrictivities are analyzed. Finally, we propose a quantitative relation-

ship between microstructure characteristics and effective conductivity, which is

validated with experimental data.

Data & Methods

Data Basis: 3D Microstructures

In total, 43 microstructures with different volume fractions (ε), windedness of

transport paths (tortuosity τ) and bottlenecks (constrictivity β) have been gen-

erated using a stochastic microstructure model, see Figure 1. The model has

been introduced by Gaiselmann et al.8 and provides an excellent data basis to

investigate empirically the relationship between geometric characteristics and

effective transport properties. In general, the stochastic microstructure model

uses tools from stochastic geometry (e.g. point processes, random graphs) and

generates random 3D geometries that can be interpreted as microstructures.

The stochastic model can generate a large variety of different microstructures.

The variability of simulated microstructures is illustrated in Figure 1. The ex-

ample on the left has intermediate properties, in terms of ε, β and τ . The middle

example has a strong anisotropy, which leads to a high tortuosity (τ ≫ 1) for

the vertical transport direction. The example on the right side is character-
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ized by relatively large bulges (rmax) and small bottlenecks (rmin), which re-

sults in a small constrictivity value (β ≪ 1). The analyzed 43 microstructures

cover a wide range of values for volume fraction (ε ∈ [0.15, 0.55]), constrictivity

(β ∈ [0.04, 0.61]) and geodesic tortuosity (τgeod ∈ [1.10, 2.74]), see also Figure 2.

The large variation of microstructure characteristics is difficult to cover with an

experimental approach (e.g. by fabrication of real samples with powder pro-

cessing and sintering). A disadvantage of the virtual approach, however, is the

fact that the effective properties can not be measured experimentally. For this

aspect we rely on numerical transport simulations.

Geometric Characteristics

The goal of this study is to quantify microstructure effects. It is important to

note that the values of the measured characteristics τ, β and ε strongly depend

on the image analysis methods and on the underlying geometrical concepts. The

applied methods for these characteristics are briefly explained in the following.

There exist several different definitions and different measurement techniques

for tortuosity.4 To quantify the effect of the windedness of transport paths, we

consider two types of tortuosities: geodesic tortuosity (τgeod) and geometric

tortuosity (τgeom).

For the geodesic tortuosity the shortest path lengths (in terms of geodesic

distance14) in transport direction from inlet- to outlet-planes are calculated

within the voxel space that represents the transporting phase (see Figure 3 left).

Geodesic tortuosity τgeod is then defined as the ratio of geodesic distance over

material thickness ℓ. To obtain a statistically solid estimate of τgeod, we consider

an average of geodesic tortuosities computed for all voxels of the transporting

phase in the inlet-plane. Geometric tortuosity is similar to geodesic tortuosity,

but the shortest paths are calculated on a skeleton of the transporting phase,
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see Figure 3 (center and right). For the calculation of the skeleton, we used

Avizo 7.15 The shortest paths are calculated using the Dijkstra algorithm.16

Geodesic tortuosity is computed in the same way as geometric tortuosity if the

transporting phase of the microstructure is interpreted as a graph where each

voxel is a node and all neighboring voxels (with respect to the 26-neighborhood)

are connected. Note that geometric tortuosity is typically larger than geodesic

tortuosity as the shortest paths for geometric tortuosity are restricted to a graph,

which is a subset of the transporting material phase. For the 43 microstructures,

an empirical relationship of τgeod = 0.76τgeom is obtained by linear regression

where the intercept is set to zero (R2 = 0.81).

The effect of bottlenecks (narrow throats) is measured in terms of constrictiv-

ity β defined as β =
(

rmin

rmax

)2

, see Holzer et al.5 Thereby, speaking heuristically,

rmin indicates the radius of the typical bottleneck and rmax the radius of the

typical bulge, see Figure 4 (left). To compute rmin and rmax from a 3D mi-

crostructure, the concept of the continuous pore size distribution (c-PSD) and

the computational mercury-intrusion-porosimetry pore size distribution (MIP-

PSD), which allow the simulation of MIP, are needed, see Münch and Holzer.10

The c-PSD P (r) is the volume fraction of the phase of interest, which can be

covered by spheres with radius r where the spheres have to be completely located

in this phase, see Figure 5 (left). The parameter rmax is the radius such that 50%

of the phase volume can be covered by spheres with this radius. Mathematically

speaking, rmax = P−1(0.5) with P−1 being the quantile function of P , see also

Figure 4 (right).

The concept of the MIP-PSD is leaned on the MIP (mercury intrusion

porosimetry): MIP is an experimental technique to characterize the pore-size

distribution in porous materials. The MIP measurements are strongly influenced

by narrow constrictions along the intrusion pathways.
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The basic idea for the simulation of MIP-PSD is to consider a ‘directed filling’

of the phase of interest by spheres. More precisely, those regions of the phase of

interest are filled which can be reached by a sphere with radius r, starting from

the inlet plane of the material, see Figure 5 (right). Thereby, the spheres are

restricted to be located completely in the phase of interest. The volume fraction

of these regions for a certain radius r is denoted by mP (r). Typically, the curve

of mP (r) exhibits a significant decrease for radii larger than a certain value,

see Figure 4 (right). This radius, which is also called ‘breakthrough radius’, is

considered as being equivalent with the characteristic size of the bottlenecks.

The parameter rmin is defined by rmin = mP−1(0.5), i.e. the 50% quantile.

For further information about the c-PSD, MIP-PSD, and constrictivity β, the

reader is referred to Holzer et al. and Münch and Holzer.5, 10 In the Section

’Testing Different Definitions of Constrictivity’, we will analyze more carefully

if this definition describes the effect of bottlenecks in a meaningful way. In the

following, we denote the constrictivity as β =
(

rmin50

rmax50

)2

in order to emphasize

the use of the 50% quantiles.

The volume fraction ε is defined as the ratio of the volume of the transporting

phase divided by the total volume of the 3D image and can be estimated simply

by counting voxels. As mentioned earlier all virtual microstructures used in

this study are based on a fully connected graph model. Hence, throughout this

paper ε represents the volume fraction of the entire connected phase.

Transport Processes

As in Gaiselmann et al.8, we consider conductive transport processes within

composite or porous materials, where only one phase is conducting. The electric
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charge transport is described by Ohm’s law

J = −σ
dU

dx
(1)

and

dU

dt
= σ

d2U

dx2
(2)

where J is the current density, σ is the conductivity, U is the electric potential,

and t is time. With constant boundary conditions, such systems converge to a

steady state which is described by the Laplace equation

d2U

dx2
+

d2U

dy2
+

d2U

dz2
= 0, (3)

where x, y, and z denote the spatial coordinates.

Since transport only takes place in one phase, the geometry of the microstruc-

ture influences the effective conductivity σeff as follows:

σeff = σ0M. (4)

Thereby, σ0 is the intrinsic conductivity (i.e., without geometric constraints),

and M is a reduction factor, where all the transport limitations caused by

geometry of the microstructure are included.

The goal is to predict the M−factor on the basis of the geometric character-

istics ε, τ, β, i.e. we are a looking for a relationship of the type M = f(ε, β, τ).

For each of the 43 synthetic microstructures, the effective conductivity and

the associated M -factor (Msim) are simulated using the software GeoDict.12
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Statistical Methods

Using statistical methods we aim to find an empirical relationship between the

microstructure characteristics (ε, β, τ) and the M -factor (Mpredict), so that this

relationship can be used to predict the effective conductivity for any 3D mi-

crostructure (e.g. using tomography). For this purpose the predictive capability

of 12 different equations describing the relationships between geometric char-

acteristics and M -factors (e.g. M = εβ

τ2 ) are analyzed with statistical methods

(see Table 1). Thereby we consider the relative error in percent between pre-

dicted and simulated M -factors, which is given by the so-called MAPE (mean

absolute percentage error) with

MAPE( ~Msim, ~Mpredict) =
1

n

n
∑

i=1

|Msim,i −Mpredict,i|

Msim,i

· 100%. (5)

Thereby, ~Msim = (Msim,1, . . . ,Msim,n) (from GeoDict12) is a vector of simulated

M -factors for n microstructures and ~Mpredict = (Mpredict,1, . . . ,Mpredict,n) a

vector of predicted M -factors. The MAPE indicates the error made by the

predictions. A lower MAPE indicates a higher predictive capability.

In Gaiselmann et al.,8 a general relationship of the following form has been

proposed:

M =
aεbβc

τd
(6)

for suitably chosen values of the parameters a, b, c, d ∈ [0,∞). Many well-known

relationships are included as specific examples, e.g. Archie’s law1 M = εb can

be obtained by choosing a = 1 and c = d = 0.

The values of the parameters in the above formula are chosen to minimize

the mean absolute percentage error (MAPE), where the optimization is carried

out using simulated annealing which is a stochastic optimization algorithm.17

When formulas are fitted to data, it is important to distinguish between
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training errors and prediction errors.13 Fitting a formula to data means that

the parameters are ‘trained’. If the error is computed for the same data that

was used for fitting, then this is called training error. When the error is com-

puted for new, unseen data that have not been used for fitting, it is called

prediction error. Differentiating between training errors and prediction errors

is crucial in order to avoid overfitting.13 Imagine we would have a formula not

with four parameters a, b, c, d, but with, say, 30 parameters. Then fitting the

formula with 30 parameters to the data with 43 samples would probably yield

an extremely small training error. But it is very likely that the formula is fitted

too much to the specific details of the data such that the fitted formula does

not capture the general relationships any more. Thus, the error for new, unseen

data (prediction error) might be rather large. Typically, with increasing number

of (model) parameters, the training error decreases. The prediction error first

decreases as well and then increases again when model complexity (i.e. number

of parameters) exceeds a certain threshold.

The prediction error is estimated by K-fold cross-validation with K = 7.13

The idea is to split the data set intoK parts 1, . . . ,K of (more or less) equal size.

For k = 1, . . . ,K, the kth part is used as test data and the remaining (K − 1)

parts are used as training data. The formula is then fitted to the training data

and the error is computed for the test data. This yields K fittings of the formula

andK test errors. The average of the test errors is an estimate for the prediction

error. For statistical accuracy, we repeated the K-fold cross-validation 80 times

with using randomly permuted data sets. The training error is computed using

the averaged parameters from repeated fittings of the formula. The results are

displayed in Table 1.
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Results & Discussion

In this paper, we aim to establish a formula that predicts the microstructure in-

fluence on effective transport properties (here: conductive transport) on the ba-

sis of geometrical characteristics (volume fraction ε, constrictivity β, tortuosity

τ). In addition, we analyze the sensitivity of the predictive formulas depending

on which type of tortuosity is being considered. Finally, we analyze how well the

established definition of constrictivity β describes the effect of bottlenecks. To

answer this question, we consider a total of 35 different constrictivity definitions

and analyze their capability to predict effective transport properties.

Predicting the Microstructure Influence on Effective Con-

ductivity (M-factor)

Table 1 shows 12 different equations that are tested for their predictive capabil-

ities using statistical methods. All 12 equations are derived from the following

basic equation: M = aεbβc

τd by varying the values of the parameters a, b, c, d.

For example the well-known relationship of eq. (9) M = εβ

τ2 is obtained with

a = b = 1, c = 0 and d = 2. In principle one can distinguish 4 subgroups of

the investigated equations. The first group (eqs. (7)-(9)) represents standard

equations, that have been widely used in literature since a long time.1–3 From

eqs. (7) to (9) more microstructure characteristics are introduced step by step.

The equations of the second group (eqs. (10)-(12)) have a similar structure,

but fitted values of parameters b, c, d are introduced, so that eqs. (8),(11) as

well as (9),(12) can be read as related couples. The equations of the third

group (eqs. (13)-(16)) then contain an additional prefactor a. In this way, eqs.

(8),(11),(15) and (9),(12),(16) become related triples with a similar structure.

The last two eqs. (17) and (18) are special cases with both fitted parameters

and fixed integers as exponents.
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The ‘standard’ equations and the importance of fitting. Regarding the first

group with traditional equations (eqs. (7)-(9)), it should be noted that eqs. (8)

and (9) have fixed integers as parameters b, c, d, which are derived from theoret-

ical considerations. In contrast, Archie’s law (eq. (7)) was applied in geological

studies by fitting the exponent b for experimental data. Probably the most fre-

quently used equation is eq. (8), which includes volume fraction and tortuosity.

In our analysis it has the highest prediction error. In comparison, eq. (7) has a

much lower error, although it considers only volume fraction as geometric char-

acteristic. The improvement compared to eq. (8) is attributed to the involved

fitting procedure. Also eq. (9) has a lower error compared to eq. (8), although

it includes no fitting of parameters. This improvement can be attributed to

the fact that eq. (9) considers all three microstructure characteristics, including

constrictivity. Hence, already the analysis of the first three (traditional) equa-

tions gives evidence that both, looking at all 3 characteristics and performing

a fitting procedure, contribute to better predictions. Consequently, applying

fitting procedures to eq. (9), which considers all three characteristics, will lead

to a further reduction of prediction errors as shown for eqs. (12) and (16)-(18).

It is plausible that fitting of the parameters improves the predictive capability

significantly. First, the parameters are fitted such that they predict a certain

output (here: effective conductivities or M -factors). But also, since tortuosity

and constrictivity are defined as volume averaged characteristics from disor-

dered 3D structures, one cannot expect that simple integers (e.g. ε1 or τ2) will

describe accurately their relationship with the effective physical properties.

Eq. (8) plays a special role, since it is often used for implicit tortuosity cal-

culations, instead of measuring tortuosity from tomography using image anal-

ysis. The procedure for implicit tortuosity measurement is as follows: if the

microstructure influence (M -factor) and the volume fraction are known, then
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solving eq. (8) for τ yields τeq.2 =
√

ε
M
). It should be noted that this kind of

implicit tortuosity does not carry real geometric information of the pathways’

lengths. To describe the microstructure effect well, all three characteristics ε, β

and τ are required. Using eq. (9), for example, would yield τeq.3 =
√

εβ

M
.

Thus, determining tortuosity by τeq.2 =
√

ε
M

leads to a characteristic that de-

scribes the effect of tortuous pathways combined with the bottleneck effect since

τeq.2 =
τeq.3√

β
. This shows that if tortuosity is computed by τeq.2 =

√

ε
M
, one

needs to be careful about the interpretation.

Necessity of all characteristics ε, β, τ . In accordance with Gaiselmann et

al.,8 it can be seen that all parameters ε, β, τ are required to describe the in-

fluence of the microstructure on conductive transport processes. Using only

volume fraction ε (eq. (7), Archie’s law) yields a relatively high prediction error

of 37.96%. Considering volume fraction ε and either constrictivity β (eq. (10))

or geodesic tortuosity τgeodesic (eq. (11)) lowers the prediction error to 36.54%

and 25.43%, respectively. Taking all three characteristics into account (eq. (12))

yields a prediction error of 19.06% (using geodesic tortuosity).

At this stage it must be emphasized that the fitting procedure was performed

always for geodesic as well as for geometric tortuosity (see Table 1). The dif-

ferences between results obtained by using geodesic and geometric tortuosities

will be discussed below.

The ‘best’ equation. At this stage, the question is still open which equation

is ‘best’. One might argue that the ‘best’ equation is eq. (16) using geomet-

ric tortuosity since it offers the overall lowest prediction error. However, it

should be taken into account that the prefactor of 2.08 could lead to effec-

tive conductivities larger than the intrinsic conductivity when the constraint of

the microstructure is very small, e.g. ε = 0.9, β = 0.9, τgeom = 1.1. Gaisel-

mann et al.8 therefore suggested to limit the predicted M -factor to 1, e.g.
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Mpredict = min

(

1, 2.08 ε1.62β0.49

τ2.26
τgeod

)

. In this case, two microstructures with iden-

tical volume fractions (e.g. 0.9), constrictivities (e.g. 0.9) but different tortuosi-

ties (e.g. 1.1 and 1.2) would be assigned the same M -factor of 1, i.e., the two

microstructures would have the same effective conductivities, although the mi-

crostructure with tortuosity of 1.2 should have a smaller effective conductivity.

For this reason we prefer equations (12) and (17) (with prediction errors

of 19.06% and 17.69%) using geodesic tortuosity. These equations are most

suitable to predict the M -factor and the associated effective conductivity in a

reliable way.

Geometric Tortuosity vs. Geodesic Tortuosity

Tortuosity is widely used in the research community, but there exists no unique

definition of this notion.4 In this paper, we consider two types of tortuosities

both of which are geometry-based: geometric tortuosity τgeom and geodesic

tortuosity τgeod. Comparing the values of the two tortuosities for all 43 virtual

microstructures indicates an almost linear relationship. Linear regression with

intercept 0 results in τgeod = 0.76τgeom. However, the results in Table 1 also

indicate that there are some fundamental differences between the geometric and

geodesic cases. Therefore, in this section we investigate whether and how the

type of tortuosity has an influence on the predictive capability of empirically

fitted formulas.

Importance of calibration. First, note that the parameters b, c, d in the fitted

formulas (e.g. eqs. (11)-(12)) deviate significantly when using geometric or

geodesic tortuosity. In eq. (12), for example, the exponent for the geodesic

tortuosity is three times larger than for the geometric tortuosity. Interestingly,

the lowest prediction errors using either geometric or geodesic tortuosity are

very similar: 17.69% (eq. (17), geodesic tortuosity) and 17.24% (eq. (16),
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geometric tortuosity). Two conclusions can be drawn from this: First, it is

absolutely essential to fit the formulas depending on what type of tortuosity

has been used. Second, the choice of tortuosity has a significant impact on the

fitted parameters and on the corresponding prediction errors. This shows how

important it is to be precise with the definition of tortuosity.

The role of the prefactor a. Choosing a different type of tortuosity also has

a strong impact on the prefactor a, which is briefly discussed in this section.

Basically eqs. (13)-(16) (with prefactors a 6= 1) can be considered as analogous

to equations (7), (10)-(12) (where a = 1). The comparison of these two sets of

analogous equations shows that the training error decreases, as expected, when

the prefactor is introduced. In the geodesic case, however, the difference for

the training error is not large. Furthermore considering the prediction errors,

for eqs. (13),(14) compared to (7),(10) the values even slightly increase, which

might indicate a slight overfitting. For eqs. (15),(16) compared to (11),(12),

the prediction errors are nearly identical for the geodesic case. In contrast, for

the geometric case the introduction of a prefactor (eqs. (15),(16)) leads to a

significant reduction of the errors (compared to eqs. (11),(12)). One possi-

ble explanation is that this prefactor aims to systematically decrease the value

of geometric tortuosity (cf. eq. (16)): 2.08ε1.62β0.49

τ2.26
geom

= ε1.62β0.49

(0.72τgeom)2.26 . Thus, in-

troducing the prefactor of 2.08 is equivalent to decreasing τgeom to 0.72τgeom.

For eq. (15), applying the same procedure, introducing the prefactor of 1.82 is

equivalent to decreasing τgeom to 0.74τgeom. These relationships derived from

the fitted formulas are very similar to the above-mentioned linear regression,

which is given by τgeod = 0.76τgeom. Interestingly, for the geodesic case in eqs.

(15)-(16), the fitted prefactors are close to one (i.e. 0.87, 0.88) and the prediction

error is similar to the case of a constant prefactor equal to 1 (eqs. (11)-(12)).

Thus, with the geodesic tortuosity, there appears to be no need to re-scale the
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values of the tortuosity. Concluding, there is empirical evidence that geometric

tortuosity overestimates the windedness of transport paths - with respect to con-

ductive transport processes. Consequently, geodesic tortuosity is capturing the

windedness of transport paths with respect to conductive transport processes

more adequately.

Testing Different Definitions of Constrictivity

The constrictivity β is defined by β = (rmin50/rmax50)
2, where rmin50 and rmax50

are the 50%-quantiles of the MIP-PSD and c-PSD, respectively. Why not defin-

ing constrictivity differently, e.g. β = (rmin90/rmax10)
2? In the following, we

test a series of potential constrictivity definitions using different quantiles of

c-PSD and MIP-PSD. In particular, we distinguish three types of constrictivity

candidates, where the definition is based

1. solely on quantiles of the c-PSD, e.g. β = (rmax75/rmax50)
2,

2. solely on quantiles of the MIP-PSD, e.g. β = (rmin90/rmin10)
2,

3. on quantiles of c-PSD and MIP-PSD, e.g. β = (rmin90/rmax75)
2.

The first case can be considered as a constrictivity which only depends on

the more traditional size distribution of the bulges (c-PSD). In the second case

constrictivity is entirely related to variations of the bottleneck-dimensions (MIP-

PSD). The third case finally considers relationships between the sizes of bulges

and bottlenecks.

Note that the constrictivity must be between 0 and 1. This puts a con-

straint on which constrictivity candidates are admissible. For example, β =

(rmax25/rmax50)
2 yields values greater than one and is consequently inadmissi-

ble.
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Let’s look at the study in more detail. For all 43 microstructures, we com-

puted the 10%, 25%, 50%, 75% and 90% quantiles of the c-PSD and MIP-PSD.

Subsequently, we consider all admissible definitions of β, i.e., ensuring that

β ∈ [0, 1]. We then fit selected equations (eqs. (9),(12),(16),(17),(18)) using

35 admissible definitions of constrictivity and compute the prediction errors

either using geometric or geodesic tortuosity. This yields a total of 350 pre-

diction errors (5 equations, 35 constrictivity candidates, 2 types of tortuosity).

To analyze this enormous data, we state the constrictivity candidates in each

of the three classes (c-PSD, MIP-PSD, both) with the lowest prediction error

for the individual equations. Thereby, the prediction errors are averaged over

geometric and geodesic tortuosity. The results are given in Table 2. First, note

the results slightly change compared to Table 1 which is due to the random-

ness of the optimization algorithm used for fitting the formulas. An important

finding is that there is no definition of constrictivity that is ‘best’ (i.e., lowest

prediction error) regarding all equations. However, the constrictivities based on

both, MIP-PSD and c-PSD always outperform those based on either c-PSD or

MIP-PSD. Thus, to accurately describe the bottleneck effect, both, MIP-PSD

and c-PSD, are required. Also note that for each equation, the prediction errors

using the established constrictivity definition (using the 50%-quantiles of c-PSD

and MIP-PSD, respectively) are very close to the lowest prediction errors. In

short, the established constrictivity definition performs well in all situations.

This suggests that β = (rmin50/rmax50)
2 describes the effect of bottlenecks quite

well.

So, which constrictivity candidate will give the best overall prediction ac-

curacy, i.e. if the prediction errors are averaged over all five equations. These

results are given in the last row of Table 2. The data suggests that constrictiv-

ity based on the 25%-quantiles of MIP-PSD and c-PSD describes the effect of
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bottlenecks best. However, the difference in terms of average prediction error is

extremely close to the established definition (24.85% vs. 26.49%). In addition,

the established definition of constrictivity has the second lowest overall predic-

tion error among the 35 constrictivity candidates. To decide which definition

is best is a difficult task - also due to the nature of stochastics: imagine you

could try 10000 definitions of constrictivity and test them on 43 samples. Then

probably, there will be one definition with an extremely low prediction error.

But is this definition really performing best or is it just by chance? To give a

statistically solid answer on which constrictivity definition is best, one would

require more data. From our point of view two statements can be made: First,

constrictivity requires both, c-PSD and MIP-PSD. Second, the established con-

strictivity definition describes the effect of bottlenecks quite well.

Validation with Experimental Microstructures

Results from two recent publications are used to validate the above proposed

relationship (eq. (12)) between the effective transport properties (σeff or Deff)

and the microstructure characteristics (ε, β and τ). These literature data include

six different SOFC anodes (details can be found in Pecho et al.18), as well as

four different porous membranes used as liquid junctions in pH-sensors.19 Both

studies provide 3D data acquired with FIB-tomography and subsequent 3D-

analyses, that were performed with the same methods used in this paper (i.e.

the same image processing algorithms were applied for measuring ε, β and τ).

Furthermore, also the same numerical transport simulations with GeoDict were

applied to compute the effective transport properties (i.e. effective conductivity

in solid phases and effective gas diffusivity in pores) by using tomography data

as morphological input. By substituting the measured values for ε, β and τ into

eq. (12) the so-called predicted M -factor (Mpred) is obtained. In order to test
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reliability and precision of the proposed method, Mpred is compared with an

independent M -factor from simulation. This so-called Msim is defined as the

ratio of the effective transport property (σeff or Deff , resulting from numerical

transport simulation) over the intrinsic transport property (σ0 or D0, used as

input for the simulation). It must be emphasized that numerical simulations

with GeoDict are capable to capture the microstructure influence on the effective

conductivity, diffusivity and permeability in a reliable and precise way. This

capability was proven by comparison with experimental measurements (see e.g.

Becker et al.20). Consequently we consider Msim as a suitable reference to test

reliability and precision of eq. (12) for predicting Mpred and the corresponding

effective properties (conductivity or diffusivity), respectively. The data from

literature used for validation are shown in Figure 6. They include 16 data

points, which are grouped into the following three subsets: a) White rhombs

represent properties of the nickel-phase in six different SOFC-anodes (related to

effective electrical conductivity). b) Gray squares represent properties of yttria-

stabilized Zr-oxide (YSZ) in the same six SOFC anodes (related to effective ionic

conductivity). c) Black triangles describe the properties related to effective gas

diffusivity in porous membranes for sensor applications. In Figure 6 (A) the data

points are nicely located along the reference line, where Msim is equal to Mpred.

These results thus confirm the capability of eq. (12) to predict the effective

transport properties based solely on microstructure characteristics. Two data

points (white rhombs) for nickel in medium- and in coarse-grained anodes exhibit

unusually high values for Msim as compared to the corresponding Mpred. It was

shown that these two samples underwent severe nickel-agglomeration due to

the exposition to harsh operating conditions including repeated redox-cycling

at 950◦C.18 It was furthermore documented that the nickel-agglomeration also

led to an increase of the representative elementary volume (REV), which clearly
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exceeds the size of the image window covered with FIB-tomography. The offset

of these two data points can be explained by the lack of representativeness in the

underlying 3D-analyses. The offset is thus not due to an eventual inaccuracy of

the prediction methods involving eq. (12).

The quality of such a validation is also dependent on the range of mi-

crostructure characteristics, which is covered by the underlying data. As shown

in Figure 6 (B-E), the data from literature cover a reasonably wide range

(ε : 0.03− 0.4, β : 0.01− 0.48 and τ : 1.1− 1.9). These plots also document that

no general correlation between ε, β and τ can be observed. For example the data

do not obey the Bruggemann-correlation (i.e. τ = ε−0.5), which is frequently

postulated in literature. This indicates that there is reasonable randomness

and variability in the parameter-constellations of our data basis, which is also

strengthening the quality of this validation. In summary, the literature data

reveal a good match between Mpred and Msim, which supports a high prediction

capability of eq. (12). A very similar result is also obtained for eq. (11) (not

shown). The MAPE is 23.3 % (excluding the two outliers). Hence, the MAPE

for these literature data with real microstructures is very similar to the MAPE

calculated earlier in this study for virtual microstructures (i.e. 22.4%, see Table

2).

Conclusions

In the present paper, we analyzed how the complex geometry of a disordered

microstructure influences conductive transport processes. Therefore, we consid-

ered 43 synthetic microstructures that were generated by a stochastic model.

For each microstructure, geometric characteristics (volume, constrictivity, tor-

tuosity) and the effective conductivity σeff (using FEM) have been determined.

As in Gaiselmann et al.,8 to establish a link between geometric characteristics
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and effective conductivities, a formula of the following type was considered:

σeff = σ0a
εbβc

τd for some parameters a, b, c, d ≥ 0 and intrinsic conductivity

σ0. Error-minimization led to the following expressions: σeff = σ0
ε1.15β0.37

τ4.39

(prediction error 19.06%) or σeff = σ0
εβ0.36

τ5.17 (prediction error 17.69%). It was

shown that all three characteristics ε, β, τ are required in order to describe the

influence of the microstructure on the effective conductivity in a reliable and

accurate way.

Besides the predictive formulas, we wanted to have a closer look at the choice

of the geometric characteristics, in particular tortuosity and constrictivity.

A comparison between geometric and geodesic tortuosity revealed that ge-

ometric tortuosity tends to overestimate the effect of tortuous pathways with

respect to conductive transport processes. But more importantly, it was shown

that it does make a significant difference which type of tortuosity is used.

Finally, we wanted to analyze how well the established definition of constric-

tivity describes the effect of bottlenecks. Therefore, we performed a simulation

study where we estimated the relative prediction error for various definitions of

constrictivity. We found that the established constrictivity definition based on

50%−quantiles of the continuous pore size distribution (c-PSD) and the com-

putational mercury-intrusion-porosimetry pore size distribution (MIP-PSD) de-

scribes the effect of bottlenecks extremely well for all considered situations. In

addition, describing the bottleneck effect sufficiently well requires both charac-

teristics, c-PSD and MIP-PSD.

The empirical relationship described in this study is of general meaning

regarding microstructure effects. It can be used to predict conductivity for dif-

ferent kinds of materials. It also introduces the quantitative basis, which is

necessary to perform knowledge-based materials optimization. In the future it

will also serve as the basis for an improved understanding of microstructure
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degradation on a quantitative level in all kinds of materials (e.g. porous elec-

trodes in fuel cells, batteries etc).
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Figure 1: Virtual geometries generated by the stochastic microstructure model.
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Figure 2: Geometric characteristics of the 43 microstructures.
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Figure 3: Illustration of two different tortuosity concepts. Left: The geodesic
tortuosity τgeod considers shortest pathways in the entire voxel-space represent-
ing the transporting phase (white). Center: Skeletonization of the transporting
phase is the basis for geometric tortuosity. Right: Geometric tortuosity de-
scribes the lengths of shortest pathways on the skeleton network.
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Figure 4: Left: basic idea of constrictivity β =
(

rmin

rmax

)2

with rmin as radius

of typical ‘bottleneck’ and rmax as radius of typical ‘bulge’. Right: example of
c-PSD and MIP-PSD.
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Figure 5: Illustration of c-PSD (left) and MIP-PSD (right). With the c-PSD
concept a larger region can be filled with a sphere of given radius x. For MIP-
PSD the intrusion at a capillary radius x from bottom to top is hindered by
narrow bottlenecks with r < x.
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Figure 6: Validation based on tomography data of real samples from litera-
ture:18, 19 A) Validation of prediction using eq. (12). B)-D) Illustration of
microstructure characteristics (phase volume fraction ε, tortuosity τ and con-
strictivity β. E) Relationship between geodesic tortuosity τ and volume fraction
ε for experimental data.
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Table 1: Results of statistical error minimization for 12 different prediction-
equations. The parameters a, b, c, d are fitted for both, geodesic (left) and geo-
metric tortuosities (right).

no. eq. geodesic tortuosity geometric tortuosity
fitted training prediction fitted training prediction

error error error error

7 εb ε2.87 36.98 % 37.96 % ε2.87 36.98 % 37.96 %

8 ε
τ2 – – 338.78 % – – 179.96 %

9 εβ

τ2 – – 41.27 % – – 39.91 %

10 εbβc ε2.28β0.39 30.88 % 36.54 % ε2.28β0.39 30.88 % 36.54 %

11 εb

τd

ε1.30

τ5.52 22.51 % 25.43 % ε2.23

τ1.09 33.31 % 41.32 %

12 εbβc

τd

ε1.15β0.37

τ4.39 16.16 % 19.06 % ε1.56β0.45

τ1.33 22.61 % 26.39 %

13 aεb 0.87ε2.72 36.93 % 41.96 % 0.87ε2.72 36.93 % 41.96 %

14 aεbβc 1.07ε2.38β0.39 30.81 % 38.69 % 1.07ε2.38β0.39 30.81 % 38.69 %

15 aεb

τd

0.87ε1.12

τ5.68 22.21 % 25.76 % 1.82ε2.31

τ2.01 31.58 % 39.90 %

16 aεbβc

τd

0.88ε1.06β0.36

τ4.35 15.76 % 19.01 % 2.08ε1.62β0.49

τ2.26 15.24 % 17.24 %

17 εβc

τd

εβ0.36

τ5.17 16.36 % 17.69% εβ0.68

τ2.21 29.59 % 33.20 %

18 εbβc

τ2

ε1.67β0.42

τ2 19.58 % 22.34 % ε1.29β0.45

τ2 24.88 % 27.81 %

34



Table 2: Summary of prediction errors for various equations, whereby the bot-
tleneck effect (i.e. constrictivity) was defined in three different ways (classes):
using quantile ratios of only c-PSD, only MIP-PSD or both. For each of the three
classes, the quantile ratio with the lowest prediction error is stated. In addition
the errors when using conventional definition of constrictivity ((rmin50/rmax50)

2)
are also shown for comparison.

no. eq. error lowest error lowest error lowest error

β =

(

rmin50

rmax50

)2
c-PSD MIP-PSD c-PSD & MIP-PSD

9 εβ

τ2 40.59% 40.88% ↔ 61.17% ↔ 39.40% ↔

β =

(

rmax75

rmax10

)2
β =

(

rmin90

rmin10

)2
β =

(

rmin25

rmax25

)2

12 εbβc

τd 22.38% 29.17% ↔ 27.28% ↔ 21.17% ↔

β =

(

rmax90
rmax50

)2
β =

(

rmin75
rmin50

)2
β =

(

rmin90
rmax90

)2

16 aεbβc

τd 18.54% 23.00% ↔ 24.12% ↔ 16.84% ↔

β =

(

rmax90

rmax10

)2
β =

(

rmin90

rmin50

)2
β =

(

rmin25

rmax25

)2

17 εβc

τd 25.55% 31.28% ↔ 28.13% ↔ 22.81% ↔

β =

(

rmax75

rmax25

)2
β =

(

rmin75

rmin50

)2
β =

(

rmin25

rmax25

)2

18 εbβc

τ2 25.38% 31.95% ↔ 29.13% ↔ 23.17% ↔

β =

(

rmax90
rmax50

)2
β =

(

rmin75

rmin50

)2
β =

(

rmin25

rmax25

)2

averaged 26.49% 31.89% ↔ 37.24% ↔ 24.85% ↔

β =

(

rmax75
rmax10

)2
β =

(

rmin90

rmin10

)2
β =

(

rmin25

rmax25

)2
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